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Two optimal control problems may arise when a solid with a rigidly attached rod is rotating in a plane: how 

to steer the system from an initial phase state to a terminal state so as to minimize a quadratic cost 

functional, and time-optimal control. A new method is proposed for constructing optimal controls, based 

on the results of [l, 21 and methods of functional analysis. The controls are constructed as series in terms of 

a certain system of functions. Using the Voigt model of matter, some consideration is also given to a system 

with a viscoelastic rod and analogous results are obtained. The method is applicable to the problem of 

steering the system from an initial to a terminal phase state so as to minimize any convex functional of the 

control. 

1. STATEMENT OF THE PROBLEM 

WE WILL study a mechanical system consisting of a solid with a rigidly attached elastic rod of 

constant cross-section and mass uniformly distributed along its length. At the centre of mass of the 
solid we place an inertial system of coordinates OX, Yl Z, , oriented so that the central axis of the 
rod lies in the 0, X1 Y1 plane. The system may rotate about the O1 Z1 axis, about which the torque 
M’(P) of the controlling forces is applied. Attached to the solid is a system of coordinates 
O’X’Y’Z’, with its origin at the point of insertion of the rod, with the O’X’ axis pointing along the 
tangent to the neutral axis of the rod at the point of insertion and the O’Z’ axis parallel to the Or Z, 
axis. The position of the entire system is uniquely described by the angle of deflection t3 (t’) (between 
the O’X’ and Or X1 axes) and the amount y’(x’, t’) of transverse deformation of the rod at a point x’ 
and time t’ (Fig. 1). 
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FIG. 1. 

A mathematical model of our mechanical system is the following system of differential equations 

[3,41: 
1 

IO” -j- 
s 

(X -f- a) y,, (X, ‘) ax = M (t) (1.1) 
0 

y,,+y,,=- (x+ajO” (1.2) 
written in non-dimensional variables 

2=.2,/l, y(r* f)=g’(x’, l’)/1, t=ht’, b”=Ei/(mP) 

a=a’ll, /-J’l(m.l’), .111(t)-M’(t’)/(ml”b2) 

with boundary conditions 

y(0, t)=JL((), f)=O, y,,(L f)=yxn(C l)=O (1.3) 

Here I, ET and m are the length, stiffness and mass per unit length of the rod, a’ is the distance 
from the centre of mass of the solid to the point of insertion of the rod, and 

where J1’ is the moment of inertia of the body about the O1 Z1 axis [below J, = J,‘l(ml’)]. 
Henceforth &(O, T) is the Hilbert space of square integrable functions M(t) (OS~G T). The 

scalar product and norm in L2 (0, t) are introduced as follows: 

We will consider the following optimal control problems. 

Problem 2. Determine the control torque M(t) E L2 (0, T) that brings system (1.2), (1.2) from an 
initial state 

O(O) =eo, O’(0) =e** (1.5) 

!/(TF, 0) =Yob), Y, (.q 0) =yu’(s) (1.6) 

to a final state at a given time T 

e(~)=e~, e*(q=el’, Y(X, T)=yr(t), l/,(x, T)=yr’(z) 

and minimizes the functional 

@ (M) = II M V) ILL TS 

(1.7) 

(1.8) 
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No loss of generality is incurred by assuming that the starting time is zero. If M(t) is discontinuous 
we will be interested in a generalized solution of problem (l.l)-(1.3). 

Problem 2. Determine the control torque M(t) E Lz(0, T), @(M)s L< m that brings system 
(l.l)-(1.3) from state (1.5), (1.6) to state (1.7) in minimum time T. 

2. A METHOD OF INTEGRATING THE BOUNDARY-VALUE PROBLEMS (l.l)-(1.3) 

We will first subject the system of equations (1. l), (1.2) to a transformation based on ideas from 
[l, 21. To that end we substitute y,(x, t), as derived from (1.2) into (l.l), to get 

[1+11)%]0**-~ (3 -t a) yxxxr (5.1) d2 = M (t) (2.1) 
i ; 

Integrating the second integral in (2.1) by parts with due attention to the boundary conditions, we 
obtain an equation 

/,O”fay,(O, i)-&(O, i)=M(t) (2.2) 

Now, isolating 8” from (2.2), we substitute it into the right-hand side of Eq (1.2). This gives the 
following equation for y (x, 1): 

yrr yuu-41 + -‘(t+a)(ay,(U, t)-y,(O, l))=-_j,-‘(s+u)M(t) 

with boundary conditions (1.3). 

(2.3) 

A solution of Eq. (2.3) satisfying the initial conditions (1.8) may be found by the Fourier method. 
We will first consider the homogeneous equation 

Y,1-+-YXX, -J-“($+a) (~y~x(o, t)-yrx(O, 2))=0 (2.4) 

with boundary conditions (1.3). Writing the solution as y(x, t) = v(x)T(~), we obtain a spectral 
boundary-value problem for V(X): 

V ““-/,-‘(s+u) (au”’ (0) -v” (0) ) =iv (2.5) 

v(O)=v’(O)=O, v”(l)=v”‘(1)=o (2.6) 

and an equation for 7(f): 
?“+hT=O (2.7) 

The spectral problem (2.5)-(2.6) was studied in detail in [l], where a complete system of 
eigenvalues 0 < A, < h2 < . . . < A,, < . . . and the corresponding eigenfunctions v, (x ) (n = 1, 2, . . .) 
were constructed. It was shown that A,, = pn4, where Pn is the nth positive root of the characteristic 
equation 

ch 8 cos p+ 1+1,-*( 2a/3-’ sh p sin p-l- 
+~~“[(u”~‘+l)~h~sin~+(u~~~-l)sh~c~s~~!~=O 

v,(x)=v,,*(rT)I(u”*(2), v,*(r)) 

(2.8) 

Here 
~,*(3)=A,ch(P,,z)+R~sh(P,~)+C~cos(B,,~~)+D,sin(P,s)+ 

+ (J,p,,z)-‘(5+a) (A”-ap”B”+u/3J”-Cn) 

A,=sh ~n+[l-2u(l,~,Z)-‘lsill ~n-2uZ(I,/3,)-‘cos B., 

B,=-ch pn--[ ~+~u(/,~~~)-‘]cos pn--2(~,Pn3)-‘sin Pn 

C,=-[ 1-t2u(/,~,2)-‘]sh p,--sin 13x-2aZ(1,/3n)-’ ch pn 

~,=[1-2u(/,/3,2)-‘lch p,+cos /3n-2(1,/3n’)-‘sh /3n 
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and the scalar product (. , .) is defined by 

(O(X), w(x))=(rJ(x), W(5))L,(o,r)-l-‘(5+a, U(I(:))L,(O&+a, rU(*~))L*(O,o 

The functions v,(x) satisfy orthogoanlity conditions 

(Un(X:), Uil~(X)~=-&&,n 

where a,, is the Kronecker delta. 
Equation (2.7) with h = h, may be integrated in an obvious way, the result being 

r,(f)=Il,cos(~,t)+b, sin(&) to,=&‘) 

(2.9) 

Hence it follows that the solution of Eq. (2.4) satisfying the initial conditions (1.8) will be 
lSJ 

y, (X.1) =L‘ 
12, 

l V,,(X) (aon cos (OJ) + b,,o,’ sin (ant)) (2.10) 
* -.z* 

%l=<yO(L), U”(X) >, bon=Q/*‘(3). u,(s)> (n=l, 2, . . .) 

Let Bv = v”” denote the operator with domain 

D(~)=~ul~(~)~~~‘~(~, I), v(O)=u’(O)=u”(i)=v”‘(1)=0} 

The operator B is selfadjoint and positive definite. We shall assume henceforth, that ya(x) E D(B), 
ye’(x) f D (B r”), where B “2 is the positive root of B [S]. 

We will now construct a solution y,(x, t) of Eq. (2.3) that satisfies homogeneous initial 
conditions. To that end we express x + a as a series in terms of the functions (2.8). Taking account of 
conditions (2.9), we have 

m 

x+a= 
z ’ 4P,, (4 
a-1 

d,=<r+a, o,(s)>=J,J-‘(~+a, u,(z))~,~~,,,=J~J-‘c, 

Hence we clearly obtain 
QI t 

y,(x,t)=-J-” 7~n(2)~,(ik,(t-t)M(r)dr 
L 
n=L ; 

(2.11) 

where 

h,(l)=o,-‘sin(ti~,t) (2.12) 

Now, substituting the solution y(x, t) = ya(x, t) +y.&, t) of Eq. (2.3) that satisfies conditions 
(1.6) into Eq. (l.l), we obtain a differential equation for 8 (t): 

(2.13) 
cm dD 

q = f + I-’ c ena, C(t) = J” ’ c,,%,“(t) 
z II==1 PI=% 

cnqre (aon co.3 (a,$) + bo,o~’ sin (cant) 
fi=l 

As a result, integrating (2.13), taking the initial conditions (1.5) ,into account, we obtain the 
desired solution: 

8 (f) f= FJe + e;t -+ ( (2 .- tL) jqzw (I,) + 5 G (2 - f) !{I (t) dt + f (lL)j fit, (2.14) 
l 

il i-l 
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3. SOLUTION OF PROBLEM 1 

In view of the relationships (1.7), (2.10) and (2.11), the results of Sec. 2 enable us to reformulate 
problem 1 as a smooth extremal problem with equality constraints: determine the minimum of the 
functional (1.8) subject to the constraints 

T 

OT’ = 80’ -+ s (m (tl) + fc (4 -4) M (1)dt $- /(tl,)dfl (3.1) 
0 ; 

T 1, 

8T = 00 -j- 8,‘T -+ \ (T-Q (+I2 (t) -i- \ G (tl - t) ,%I (t) dr -f- f (t,))dt, (3.2) 
; ; 

T 

aT” = a,, cos (WJ) -i- b,,w,’ sin (W*l’) - PC,, c k, (T - 7) M (t) dT (3.3) 
i 

T 

bT” = - o,aon sin (o,,T) + b,, cos (o,T) - I-Q, c 
Jc,,’ (T - z) M (T) dt 

; 

+=Q/r(2), L’,(I)), brn=Q/,‘(r), U”(S)) (n=l, 2, . . .) 

(3.4) 

Let &(O, T) denote the set of functions M(t) E &(O, T) that satisfy conditions (3.1)-(3.4). A 
direct check shows that M,(O, T) is a closed convex set [6] and Q(M) is a convex functional. 

Hence, by the Kuhn-Tucker Theorem [6], a unique function M * (t) E M2 (0, T) exists which 
minimizes the functional (1.8). 

A few words about the practical calculation of M*(t). We first transform (3.1) and (3.2), taking 
(2.12), (2.13) and (3.3), (3.4) in t o consideration. It is at once clear that 

-T)LV (T)dT)dtl - i(qM(t’)- 
i, 

- cos (wlltl) isin (6),1c) Al (r) dr) 1 dl, := j qM (1,) dt, -j- 
Ii 0 

I- ~~‘~~~~(cos(w,l.)~cos(o,,r)~~(r)dr-~sin(o,T)~sin(~,,~)M(r)dr- 
7. = 1 ; ; 

Then, in view of (3.3) and the equality 

T 

\ f (tJ dt, -- E G, [~,~a,,, sin (w,J’) -1- bo,, (1 - ~0s (%T))l 

Ii ,.;=, 

we can rewrite (3.1) in the form 
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(3.5) 

A similar transformation is applied to (3.2). 
As a result we obtain 

It follows from (3.3) and (3.4), respectively, that 

(3.6) 

(3.7) 

n,,(T)=c,-‘l(-b,,‘-o,,a,, sin(eh,T)+bor. cos(rti,T)) 

1 Tzn+ltM)=(k(T--t), M(t)),,,,o, T,=A2tr, ,(U (3.8) 

~,,,.,~T)=C,-‘l(-a,~+a,,cos(o,,T)t-o,-’b,,,sin(o,T)) 

Remark I. It follows from the properties of the functions vn(x) (as n + a they tend uniformly to the usual 
beam functions, which satisfy the boundary conditions (2.6) [I]) that c,(- O(n-’ ). a,,,,. aT,,,- O(n-‘), ho,, , 
b r,,-O(n-“) as n-+00. 

Hence, also using the fact that o,,-[v(Zrz + 1)/Z] ~as~~~.weobt~~inA~,,(~)-O(~-‘),A~~~,(~)-O(~~~~) 
as n--t *. Thus 

Let P2,z+ 1 (0, T) denote the (2N+ it)-dimensional subspace of L2 (0, T) spanned by the following 
orthogonal system of functions in L2 (0, T): 

m,(l)=T- %, m,i_,(t)=T-“.2cos(2nT-‘jt) 

m,j(l)-T-“.2Sin(2nT-‘jl) (j=1, . . . , 3) 

Let us find the minimum of (1.8) over P2,1+1 (0, T) subject to conditions (3.5)-(3.8), where n = 
0,. . ., IV, using Lagrange multipliers. The condition that the Lagrange function 

2.V i.1 

L (M, A,, . . ., lv*Nf.I) E 4) (M) -+- x ?b;l,j (M) 
i=O 

be minimized under conditions (3.5)-(3.8) (in which n = 1, . . . , A’) yields a system of linear 
algebraic equations for the coefficients of the expansion of the function 

and the Lagrange multipliers ho, . . . , AZ,V+I : 

2Nr1 

pi + 
z 

l AjtTj (ni) Ez 0 (i E 0, S * -9 2N) 
j=O 

?N 

c 
PilTj (mi) ~ 0 (i == 0, - . .I 2‘~ + 1) 

r-U 

(3.9) 

(3.10) 
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which is uniquely solvable. Since the solution of the extremal problem (1.8), (3.5)-(3.8) is unique, 
~~*(~)~~~(~) as N--+m. 

This technique for constructing an optimal control M*(t) is valid for any convex functional @(M). 
Equations (3.9) may be non-linear in Pi, but system (3.9), (3.10) will still be uniquely solvable. 

We will now consider another, more effective construction of an optimal controt M”(r) for the 
functional (1.8). Define the system of functions 

C$O(l)=l* C$$(t)=T--t, ~Fsj(t)=kjjjT-t), ip$tj+ljt)=k'(T-t) (3.11) 

(j=& 2, . . .) 

Let Hz(O, 2”) denote the subspace of L2(0, T) defined as the closed linear span of the functions 
(3.11). 

The system (3.11) is not orthogonal in L2(0, T). However, we can apply the Schmidt 
orthogonalization procedure in L,(O, T) [5] to obtain a system of functions $,(t). We put 

$pU”(t)=rp0(0, Ip&)=gJNv0 

(3.12) 

. . . . . 

S---l 

9Cln” (0 = (Pn w -z adPi 0 % 0) == Qn v WV, 

j=O 

(a#= (9” (t). $,tt) ?L~(o,T;~ Vn+l$n”(f) ll~~f~,r)J 

Together with (3.12) we introduce quantities Pn (t) defined as follows: 

B. VI I= A0 (~)~~~o* f4 Vf = (4 V) -aa,,& V)VvIT e - l t Bn (0 = 

A direct calculation shows that 

qO(r) =T-%, 9, it) =3%T-%_2. 3%T-%t 

~,(T)=A,(T)T-“, BI(T)=(2A,(T)T-“-A,(T)T-“)31b 

(3.13) 

Remark2. By Remark 2, the form of the functions (3.11) and the scheme used to construct (3.12) and (3.13), 

8(T) = 
c 

fln2(T)<m, limB(T)=m, lim8(T)==O 
T-CO h =” T-*m 

The functions $,(t) form an orthonormal basis in H2(0, T). Hence, by (3.12) and (3.13), it follows that 
(3.5)-(3.8) are equivalent to the equalities 

(J+l(l), 9.(0)LI(0.T)=BnV) (n=O, 1,. . .) (3.14) 

Proposition 1. The solution of Problem 1 is given by the formula 

(3.15) 

To prove this, we will represent &(O, T) as a direct sum &(O. T) = H2(0, T)@Q2(0, T), where Q2(0, T) is 
the orthogonal complement of k&(0, T). It follows that any function M(r) in the convex set 
M,(O. ~)~anbeexpressedas~(~) =~~(f)+Q(~), h w ere M*(t) is given by (3.15) and Q(r) is any function in 
Qz(O, T). Indeed, by (3.14) and (3.15), 
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which proves the proposition. 

4. THE SOLUTION OF PROBLEM 2 

We introduce the function G(T) = O(T) - L. Let T* denote the first positive root of the equation 
6(T) = Il. Its existence follows from Remark 2. 

Proposition 2. The pair [Z’*, M*(t)], w h ere M*(r) is given by formula (3.15) with T = T”, is a 
solution of Problem 2. 

The proof is an almost literal repetition of that of Proposition 1. One should only note that 

5. THE CASE OF A VISCOELASTIC ROD 

Consider the mechanical system described in Sec. 1, assuming now that the rod is viscoelastic. 
According to Voigt’s rheological model of matter (a = E(E + VE’) ) [7], the following system of 
differential equations is a model of the system: 

(5.1) 

y,,+~~y,,,+y,=-(s+a)O” (5.2) 

with boundary conditions (1.3), where h = ~(EZ/rn)~~~l 2. The system is written in the same 
non-dimensional variables as in Sec. 1. 

We will dwell on the construction of solutions of the bounda~-value problem (1.3), (5.1) and 
(5.2) with initial conditions (1.5) and (1.6). By analogy with the discussion in Sec. 2, we transform 
the system of equations (5.1), (5.2), obtaining the following analogue of Eq. (2.3): 

Ytt-l-hIYt- -J,-‘f~-w (UY,,(O, t)--ylxx(O, t)) I+ 
SYn3-z --I,-‘(~+a) (~Yr%xfO, t)-!&(0, t))=--J,-‘(xz+a)M(t) (5.3) 

We will construct a solution of Eq. (5.3) with boundary and initial conditions (1.3) and (1.6), 
respectively. Using the Fourier method, we will first solve the equation 

!/,,+~Iytxpx -I,-‘(s+a) (ayt*rx(o, l)--y,xx(O, t))l+ 
-tY- -I,-‘(z+a) (aYxzx(O, 1) -L&,(0, i) I-0 (5.4) 

Defining y (x, t) = v(x)~(t), we see that V(X) must satisfy the spectral boundary-value problem 
(2.5), (2.6), and l(f) is a solution of the differential equation 

T*‘+hOnzZ’+On%=o (5.5) 

whose general solution is 

T(t)=& cxp(q,,t)fd,,exp(q,,t) 

where qnr ,nZ L- [ --hwn2 f (h2wn4 - 4~,*)~‘~]/2. For those rz for which qnl and qn2 are complex, we 
take d,, and dn2 to be complex conjugates. 
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Hence it follows that the solution of Eq. (5.4) satisfying the initial conditions (1.6) is 

~nl=t~O”gnZ-~On)l(Qna-q”l), d,2=(aocl,,-b,,)l(g,,-_q”,) 
and the solution of Eq. (5.3) isy(x, t) = yo(x, t) +y,(x, t), wherey,(x, t) is given by formula (2.11) 
with 

~~~~~=i@xp(q”,~)--uxpfq~,~))l(rl,,-~~*~ 

The function e(t) is determined by solving Eq. (2.13) with k,,(t) as in (5.6) and 

f 0) = - 2 c, V,,& exp (M) + k&L erp (U)) 
n-1 

(5.6) 

All the results of Sets 3 and 4 hold for the boundary-value problem (1.3), (5.1) and (5.2). In this 
case 

(P 

A *n*f i T) -G-s J t-urn+&,qnr exptqRt~~+4,1qIL2 exp(q~~~~)) 

Exampfe. Consider the following mechanical system: the solid is a cube of side h = 1.5 x 10-l m; the rod is 
elastic, of length 1= 7.5 x 10-l m and square cross-section with side h’ = lo-’ m; the material is steel 
(p=7.8x103 kg/m3 and E=2~10 ” N/m2). As a result we obtain J’ = 3 x IO-‘; J = 7.331 x 10-l; 
b = 2.55 x 10’ see-‘; 6’ = 2.306; p2 = 4.764; pX = 7.877; PJ = 1.101 x 10’; ps = 1.414 x 10’; c’ = 9.759 x 10-l; 
cz = 3.255 x 10-l; c3 = 1.431 x 10-l; c4 = 8.021 x lo-‘; cs = 6.064 x lo-‘. 

Figures 2, 3 and 4 are plots of the solutions M(t) of Problem 1, and of the phase variable 0(t) (the dashed 
curve) for rotation of the system from the zero equilibrium position through an angle B. = 7n’2, with the 
vibrations of the rod completely damped out, for T = 0.2,O. 1 and 0.05 set, respectively. 

FIG. 2. FIG. 3. 

-9.31, / 

FIG. 4. 
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SIGNAL PROPAGATION IN A RELATIVISTIC FLUID WITH 
VISCOSITY AND HEAT CONDUCTION-F 

0. Yu. DINARIYEV 

Moscow 

(Received 2X March 1 Y9 1) 

In order to eliminate the paradox due to the faster-than-light propagation of signals in standard relativistic 

models of fluids with dissipation, it is proposed to replace the dissipative coefficients in the constitutive 

equations by relaxation kernels, i.e. to use a theory with memory. It is shown that this yields signals with 

finite velocity, which. however, need not be less than that of light. The condition that the signal propagate 

at a velocity not exceeding that of light in a vacuum imposes certain u priori restrictions on the dissipative 

characteristics of a fluid. 

INTRODUCTION 

FLUIDS or gases with viscosity and heat conduction are described in relativity theory by two standard 
models, due respectively to Eckart [l] and Landau and Lifshits [2]; these models are physically 
equivalent [3], both preserving the characteristic feature of the non-relativistic Navier-Stokes- 
Fourier model, namely infinitely fast signal propagation in a locally attached inertial frame of 
reference (LAIFR). 

In non-relativistic mechanics the unrealiability of theories with instantaneous signal propagation 
has long been recognized. A modified heat equation was proposed, with the result that the dynamics 
of the temperature field is governed by a telegraph-type equation. This idea was generalized by 
postulating a relaxation connection between the heat flux and the temperature gradient [5], i.e. 
basing the discussion on a theory of media with memory [6, 71. A non-relativistic model of a viscous 
heat-conducting fluid with memory was constructed and it was proved that the signal velocity in such 

1-Prikl. Mut. Mekh. Vol. 56, No. 2, pp. 2.5(&259, 19Y2. 


